73 | 0 | 10 |
下载次数 | 被引频次 | 阅读次数 |
铼(Re)是地球上最稀有的元素之一,很少形成独立的矿床。自然界中Re集中产出于辉钼矿中,但辉钼矿作为富集Re的典型矿物,由于W-Re分离的困难,其Re同位素的研究仍为空白。联合运用AG1-X8型阴离子树脂和TODGA树脂进行Re的分离提纯,在保证Re接近完全回收(Re回收率约98%)的前提下,一遍提纯流程可使Mo/Re比值降低约100%,W/Re比值降低约99%,因此,可建立适用于辉钼矿等高W/Re比值地质样品高效的Re提纯流程。提纯后的Re溶液上Neptune Plus型多接收电感耦合等离子体质谱仪(MC-ICP-MS)进行测定,采用W掺杂校正和样品—标样间插法均可获得高精度Re同位素组成。四件国产标准Re溶液的测量结果分别为:δ187Re(BWB2376-2016-1)=-0.05‰±0.05‰(n=6)、δ187Re(BWB2376-2016-2)=-0.65‰±0.06‰(n=30);δ187Re(GSB04-1745-2004)=-0.26‰±0.04‰(n=12);δ187Re(GSBG-62064)=-0.22‰±0.04‰(n=12)。对USGS岩石学标准物质BCR-2、SBC-1、BHVO-2和七件天然辉钼矿样品进行全流程处理,并进行Re同位素测定,测得:δ187Re(BCR-2)=-0.02‰±0.05‰(n=6)、δ187Re(SBC-1)=-0.02‰±0.04‰(n=3)、δ187Re(BHVO-2)=-0.01‰±0.05‰(n=2),与前人发表的数据在误差范围内。天然辉钼矿石的δ187Re存在显著差异,为-0.34‰~0.27‰,表明自然界辉钼矿的Re同位素存在分馏,系统的Re同位素研究具有示踪矿体演化过程和成矿物质来源的潜力。
Abstract:Rhenium(Re) is one of the scarcest elements on Earth and seldom forms independent deposits. In nature,Re is concentrated in molybdenite. However,due to the challenge in separating W and Re,the study of Re isotopes in molybdenite remains a void. In this paper,the combination of AG1-X8 anion resin and TODGA resin was employed to separate and purify Re. On the premise of ensuring an almost complete recovery of Re(with a Re recovery rate of approximately 98%),a single purification process can reduce the Mo/Re ratio by around 100% and the W/Re ratio by about 99%. Consequently,an efficient Re purification process suitable for geological samples with high W/Re ratios,like molybdenite,can be established. The purified Re solution is measured on the Neptune Plus MC-ICP-MS,and high-precision Re isotope composition can be achieved through W doping and the samplestandard bracketing correction. The results of four domestic standard Re solutions are as follows:δ187Re(BWB2376-2016-1)=-0. 05‰±0. 05‰(n=6),δ187Re(BWB2376-2016-2)=-0. 65‰±0. 06‰ (n=30),δ187Re(GSB04-1745-2004)=-0. 26‰±0. 04‰(n=12),δ187Re(GSBG-62064)=-0. 22‰ ±0. 04‰ (n=12). The USGS reference materials and molybdenite ore samples were processed throughout the entire process,and the Re isotope was determined. The results indicated that δ187Re(BCR-2)=-0. 02‰ ±0. 05‰ (n=6);δ187Re(SBC-1)=-0. 02‰±0. 04‰ (n=3);δ187Re(BHVO-2)=-0. 01‰±0. 05‰ (n=2),which are consistent with previously published data within the error range. The δ187Re values of seven natural molybdenite samples show a significant difference in δ187Re values of approximately 0. 6‰ (ranging from-0. 34‰ to 0. 27‰),suggesting that there is fractionation of Re isotopes in natural molybdenite. Systematic investigations of Re isotopes hold the potential to trace the evolutionary process of ore bodies and the source of mineralizing materials.
[1]黄凡,赵云彪,王岩,等.中国铼资源特征及其勘查开发利用现状[J].中国矿业,2024,33(4):23-31.HUANG Fan,ZHAO Yunbiao,WANG Yan,et al.Resource characteristics and current situation of exploration,development and utilization of rhenium in China[J]. China Mining Magazine,2024,33(4):23-31.
[2]周成胶,张刚阳,张丁川.铼金属矿床类型、元素赋存形式和富集机制[J].地质科技通报,2021,40(4):115-130.ZHOU Chengjiao,ZHANG Gangyang,ZHANG Dingchuan.Types,element occurrence forms and enrichment mechanisms of rhenium metal deposits[J]. Bulletin of Geological Science and Technology,2021,40(4):115-130.
[3]杜安道,屈文俊,王登红,等.辉钼矿亚晶粒范围内Re和187Os的失耦现象[J].矿床地质,2007(5):572-580.DU Andao,QU Wenjun,WANG Denghong,et al.Subgrain-size decoupling of Re and 187Os within molybdenite[J]. Mineral Deposit,2007(5):572-580.
[4]廖仁强,刘鹤,李聪颖,等.从铼的地球化学性质看我国铼找矿前景[J].岩石学报,2020,36(1):55-67.LIAO Renqiang,LIU He,LI Congying,et al. Rhenium resource exploration prospects in China based on its geochemical properties[J]. Acta Petrologica Sinica,2020,36(1):55-67.
[5]杨宗锋,罗照华,卢欣祥,等.关于辉钼矿中Re含量示踪来源的讨论[J].矿床地质,2011,30(4):654-674.YANG Zongfeng,LUO Zhaohua,LU Xinxiang,et al.Discussion on significance of Re content of molybdenite in tracing sourceof metallogenic materials[J]. Mineral Deposits,2011,30(4):654-674.
[6]沈传刚,肖庆飞,宋念平,等.磨矿细度对辉钼矿浮选的影响[J].有色金属(选矿部分),2017(1):51-54,68.SHEN Chuangang,XIAO Qingfei,SONG Nianping,et al.Effect of grinding fineness on molybdenite flotation[J].Nonferrous Metals(Mineral Processing Section),2017(1):51-54,68.
[7]郭娟,崔荣国,王卉,等.世界铼资源供需现状及展望[J].国土资源情报,2020(10):67-74.GUO Juan,CUI Rongguo,WANG Hui,et al. Supply and demand situation and outlook of global rhenium resources[J]. Land and Resources Information,2020(10):67-74.
[8]杨延宙,郭万中,加永泽仁,等.西藏某斑岩型铜矿石浮选回收试验研究[J].有色金属(选矿部分),2024(12):91-96.YANG Yanzhou,GUO Wanzhong,JIAYONG Zeren,et al.Experimental study on flotation recovery of a porphyry copper ore in Xizang[J]. Nonferrous Metals(Mineral Processing Section),2024(12):91-96.
[9]温汉捷,周正兵,马万平,等.黑色岩系型战略性关键矿产资源研究进展及主要科学问题[J].矿物岩石地球化学通报,2024,43(1):14-34.WEN Hanjie,ZHOU Zhengbing,MA Wanping,et al.Research progresses and main scientific issues of strategically critical minerals in black rock series[J].Bulletin of Mineralogy,Petrology and Geochemistry,2024,43(1):14-34.
[10]孙鹏程,李超,周利敏,等.中国斑岩铜(钼)矿床中辉钼矿Re含量变化及控制因素[J].矿床地质,2021,40(2):273-292.SUN Pengcheng,LI Chao,ZHOU Limin,et al. Change of Re content in molybdenitein China porphyry copper(molybdenum)deposit and its controlling factors[J].Mineral Deposits,2021,40(2):273-292.
[11]黄凡,王登红,王岩,等.中国铼矿成矿规律和找矿方向研究[J].地质学报,2019,93(6):1252-1269.HUANG Fan,WANG Denghong,WANG Yan,et al.Study on metallogenic regularity rhenium deposits in China and their prospecting direction[J]. Acta Geologica Sinica,2019,93(6):1252-1269.
[12] MILLER C A,PEUCKER-EHRENBRINK B,SCHAUBLE E A. Theoretical modeling of rhenium isotope fractionation,natural variations across a black shale weathering profile,and potential as a paleoredox proxy[J]. Earth and Planetary Science Letters,2015,430:339-348.
[13] DELLINGER M,HILTON R G,NOWELL G M.Measurements of rhenium isotopic composition in lowabundance samples[J]. Journal of Analytical Atomic Spectrometry,2020,35(2):377-387.
[14] DICKSON A J,HSIEH Y,BRYAN A. The rhenium isotope composition of Atlantic Ocean seawater[J].Geochimica et Cosmochimica Acta,2020,287:221-228.
[15] DELLINGER M,HILTON R G,NOWELL G M.Fractionation of rhenium isotopes in the Mackenzie River basin during oxidative weathering[J]. Earth and Planetary Science Letters,2021,573:117131. DOI:10. 1016/j. epsl. 2022. 117131.
[16] POURMAND A,DAUPHAS N. Distribution coefficients of 60 elements on TODGA resin:application to Ca,Lu,Hf,U and Th isotope geochemistry[J]. Talanta,2010,81(3):741-753.
[17]罗善霞,焦圣兵.地质样品中铼的分离和测定方法研究进展[J].冶金分析,2013,33(2):22-27.LUO Shanxia,JIAO Shengbing. Research progress on separation and determination method of rhenium in geological samples[J]. Metallurgical Analysis,2013,33(2):22-27.
[18]熊英,吴峥,董亚妮,等.封闭消解-阳离子交换分离-电感耦合等离子体质谱法测定铜铅锌矿石中的铼[J].岩矿测试,2015,34(6):623-628.XIONG Ying,WU Zheng,DONG Yani,et al.Determination of rhenium in copper-lead-zinc ore by inductively coupled plasma-mass spectrometry with closed decomposition and cation exchange separation[J].Rock and Mineral Analysis,2015,34(6):623-628.
[19]汤地生,杨婉晴,张宇.电感耦合等离子体质谱(ICP-MS)法测定高钨基体样品中稀土元素的含量[J].中国无机分析化学,2024,14(4):457-463.TANG Disheng,YANG Wanqing,ZHANG Yu,et al.Determination of rare earth elements in high tungstenbearing samples by inductively coupled plasma mass spectrometry(ICP-MS)[J]. Chinese Journal of Inorganic Analytical Chemistry,2024,14(4):457-463.
[20]吴小龙,李晓敏,符式锦,等.全自动消解-电感耦合等离子体质谱(ICP-MS)法测定海洋沉积物中重金属[J].中国无机分析化学,2023,13(11):1165-1170.WU Xiaolong,LI Xiaomin,FU Shijin,et al.Determination of heavy metals in marine sediments by inductively coupled plasma mass spectrometry with automatic digestion[J]. Chinese Journal of Inorganic Analytical Chemistry,2023,13(11):1165-1170.
[21]张鹏鹏,胡梦颖,徐进力,等.电感耦合等离子体质谱(ICP-MS)法工作参数对灵敏度和氧化物干扰的实验研究[J].中国无机分析化学,2023,13(4):396-406.ZHANG Pengpeng,HU Mengying,XU Jinli,et al. Study on the interference of ICP-MS operating parameters on sensitivity and oxide[J]. Chinese Journal of Inorganic Analytical Chemistry,2023,13(4):396-406.
[22]王奇奇,孙贺,顾海欧,等.磺酸型阳离子树脂的元素分配行为及高精度同位素分析应用[J].岩矿测试,2024,43(1):63-75.WANG Qiqi,SUN He,GU Haiou,et al. Elemental distribution behavior of sulfonic acid cation-exchange resins and applications to high-precision isotope analysis[J]. Rock and Mineral Analysis,2024,43(1):63-75.
[23] MILLER C A,PEUCKER-EHRENBRINK B,BALL L.Precise determination of rhenium isotope composition by multi-collector inductively-coupled plasma mass spectrometry[J]. Journal of Analytical Atomic Spectrometry,2009,24(8):1069. DOI:10. 1039/B818631F.
基本信息:
DOI:10.20236/j.CJIAC.2025.06.007
中图分类号:O657.63;O614.713;P623
引用信息:
[1]李宇,孙贺,顾海欧等.地质样品的高精度Re同位素分析[J].中国无机分析化学,2025,15(06):800-810.DOI:10.20236/j.CJIAC.2025.06.007.
基金信息:
国家自然科学基金重点项目(42430811);国家自然科学基金项目面上项目(42373001); 地质过程与矿产资源国家重点实验室开放课题资助项目(GPMR202314)